19 research outputs found

    Feedback Control as a Framework for Understanding Tradeoffs in Biology

    Full text link
    Control theory arose from a need to control synthetic systems. From regulating steam engines to tuning radios to devices capable of autonomous movement, it provided a formal mathematical basis for understanding the role of feedback in the stability (or change) of dynamical systems. It provides a framework for understanding any system with feedback regulation, including biological ones such as regulatory gene networks, cellular metabolic systems, sensorimotor dynamics of moving animals, and even ecological or evolutionary dynamics of organisms and populations. Here we focus on four case studies of the sensorimotor dynamics of animals, each of which involves the application of principles from control theory to probe stability and feedback in an organism's response to perturbations. We use examples from aquatic (electric fish station keeping and jamming avoidance), terrestrial (cockroach wall following) and aerial environments (flight control in moths) to highlight how one can use control theory to understand how feedback mechanisms interact with the physical dynamics of animals to determine their stability and response to sensory inputs and perturbations. Each case study is cast as a control problem with sensory input, neural processing, and motor dynamics, the output of which feeds back to the sensory inputs. Collectively, the interaction of these systems in a closed loop determines the behavior of the entire system.Comment: Submitted to Integr Comp Bio

    Evaluation of Food Insecurity in Adults and Children With Cystic Fibrosis: Community Case Study

    Get PDF
    Advances in the care and treatment of cystic fibrosis (CF) have led to improved mortality rates; therefore, considerably more individuals with CF are living into adulthood. With an increased number of CF patients advancing into adulthood, there is the need for more research that surrounds the aging adult CF patient. It is important to conduct research and collect results on the aging CF population to help better prepare the CF patient, who is dealing with the heavy treatment and financial burden of their disease, build autonomy and increase their quality of life. Of note, research has found that social, behavioral, and physical factors influence the ability of those with CF to follow dietary recommendations. A primary treatment goal in CF is a high calorie, high protein, and high fat diet. A socio-economic factor that has not been adequately investigated with regards to dietary compliance of individuals with CF is food insecurity. The aim of this community case study was to document the experiences and estimate the prevalence of food insecurity among CF patients residing in Idaho. The correlation between food insecurity and health outcomes (lung function and body mass index) was also examined. Participants included adult patients and parents of pediatric patients with CF. Food insecurity rates among CF patients of all ages were found to be significantly higher than that seen in the overall community; however, no specific correlation between food insecurity and body mass index (BMI) or lung function emerged. This case study highlights the need for continued research around food access issues in this patient population. The data resulting from this study shows the value of CF advocacy organizations promoting efforts to build resources and provide education around food insecurity issues

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Landmark Navigation by Honeybees (Apis Mellifera)

    No full text
    (Statement of Responsibility) by Sarah A. Stamper(Thesis) Thesis (B.A.) -- New College of Florida, 2006(Electronic Access) RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE(Bibliography) Includes bibliographical references.(Source of Description) This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.(Local) Faculty Sponsor: Bauer, Gordo

    Snake robot uncovers secrets to sidewinders’ maneuverability

    No full text

    ilar50405 361..372

    No full text
    Abstract Weakly electric fi shes have been an important model system in behavioral neuroscience for more than 40 years. These fi shes use a specialized electric organ to produce an electric fi eld that is typically below 1 volt/cm and serves in many behaviors including social communication and prey detection. Electrical behaviors are easy to study because inexpensive and widely available tools enable continuous monitoring of the electric fi eld of individual or groups of interacting fi sh. Weakly electric fi sh have been routinely used in tightly controlled neurophysiological experiments in which the animal is immobilized using neuromuscular blockers (e.g., curare). Although experiments that involve immobilization are generally discouraged because it eliminates movement-based behavioral signs of pain and distress, many observable electrosensory behaviors in fi sh persist when the animal is immobilized. Weakly electric fi sh thus offer a unique opportunity to assess the effects of immobilization on behaviors including those that may refl ect pain and distress. We investigated the effects of both immobilization and restraint on a variety of electrosensory behaviors in four species of weakly electric fi shes and observed minor effects that were not consistent between the species tested or between particular behaviors. In general, we observed small increases and decreases in response magnitude to particular electrosensory stimuli. Stressful events such as asphyxiation and handling, however, resulted in signifi cant changes in the fi shes' electrosensory behaviors. Signs of pain and distress include marked reductions in responses to electrosensory stimuli, inconsistent responses, and reductions in or complete cessation of the autogenous electric fi eld
    corecore